Sains Malaysiana 52(7)(2023):
2103-2114
http://doi.org/10.17576/jsm-2023-5207-16
Sound-Absorbing
Material Based Oil Palm Frond Natural Fibres
(Serat Asli Pelepah Kelapa Sawit Berasaskan Bahan Penyerap Bunyi)
LAY
SHENG EWE1,*, WENG KEAN YEW2,
HAI SONG WOON1 & ZAWAWI IBRAHIM3
1College of Engineering, Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
2School of Engineering
and Physical Sciences, Heriot-Watt University Malaysia, No 1, Jalan Venna P5/2, Precint 5, 62200 Putrajaya, Malaysia
3Engineering and
Processing Division, Malaysian Palm Oil Board (MPOB), No. 6, Persiaran Institusi,
Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
Received: 4 March 2023/Accepted: 28 June 2023
Abstract
Effective
noise control is vital for improving living standards, but traditional sound
absorbers pose health risks. Natural fibers offer a
sustainable alternative, with consistent absorption rates across a broad
frequency range. These fibers, widely available in
Malaysia, are non-toxic, lightweight, renewable, and eco-friendly, making them
an attractive option. The safety benefits of natural fibers further enhance their appeal as sound absorbers, making them an excellent
choice for those concerned about environmental impact and personal health. This
study will examine the effect of different thicknesses on the acoustic
performance of natural fibers from oil palm fronds
(OPF). The findings demonstrate that, when material density is 160 kg/m3,
all thicknesses can achieve a good Sound Absorption Coefficient (SAC) of 0.8 or
greater within 3600 - 6400 Hz range. However, at 180 kg/m3 density,
only the 10 mm thickness sample has SAC of 0.8 or greater, but for 2800 - 6400
Hz range. It is worth noting that, across 0 - 6400 Hz, 10 mm thick and 180 kg/m3 density sample has higher SAC than 160 kg/m3 samples. Nevertheless,
for 12 mm, 14 mm, and 16 mm thicknesses, SAC of 160 kg/m3 is higher
than 180 kg/m3 after an interception point. Before that interception
point, SAC of 160 kg/m3 is lower than 180 kg/m3. As
thickness increases from 12 mm to 16 mm, the interception point decreases from
2100 Hz to 1600 Hz. The research demonstrates that various factors, such as
frequency, density, thickness, and fiber structure,
impact the acoustic performance of OPF LDF.
Keywords:
Density; oil palm frond (OPF); sound absorption coefficient (SAC); thickness
Abstrak
Kawalan bunyi yang berkesan adalah penting untuk meningkatkan tahap kehidupan, tetapi penyerap bunyi tradisional mempunyai risiko kesihatan. Serat semula jadi menawarkan alternatif yang mampan dengan kadar penyerapan yang tekal merentasi pelbagai julat frekuensi. Serat ini, yang melimpah di Malaysia, tidak toksik, ringan, boleh diperbaharui dan mesra alam, menjadikannya pilihan yang menarik. Manfaat keselamatan serat semula jadi lebih menambah daya tarikan mereka sebagai penyerap bunyi, menjadikannya pilihan yang sangat baik bagi mereka yang prihatin tentang impak alam sekitar dan kesihatan diri. Penyelidikan ini mengkaji kesan ketebalan yang berbeza pada prestasi akustik serat semula jadi daripada pelepah kelapa sawit (OPF). Hasil kajian menunjukkan bahawa, apabila ketumpatan bahan adalah 160 kg/m3, semua ketebalan dapat mencapai Koefisien Penyerapan Bunyi (SAC) yang baik iaitu 0.8 atau lebih dalam julat frekuensi 3600 - 6400
Hz. Walau bagaimanapun, pada ketumpatan 180 kg/m3, hanya sampel ketebalan 10 mm yang mempunyai SAC 0.8 atau lebih, tetapi untuk julat frekuensi 2800 - 6400 Hz. Perlu dicatat bahawa, merentasi julat 0 - 6400 Hz, sampel ketebalan 10 mm dan ketumpatan 180 kg/m3 mempunyai nilai SAC yang lebih tinggi daripada sampel 160 kg/m3. Namun begitu, untuk ketebalan 12 mm, 14 mm dan 16 mm, nilai SAC 160 kg/m3 lebih tinggi daripada 180 kg/m3 selepas titik intersepsi. Sebelum titik intersepsi itu, nilai SAC 160 kg/m3 lebih rendah daripada 180 kg/m3. Apabila ketebalan meningkat daripada 12 mm ke 16 mm, titik intersepsi berkurangan daripada 2100 Hz kepada 1600 Hz. Kajian ini menunjukkan bahawa pelbagai faktor, seperti frekuensi, ketumpatan, ketebalan dan struktur serat, mempengaruhi prestasi akustik OPF LDF.
Kata kunci: Ketebalan; ketumpatan; koefisien penyerapan bunyi (SAC); pelepah kelapa sawit (OPF)
REFERENCES
Abdul,
H.P.S., Jawaid, M., Hassan, A., Paridah,
M.T. & Zaido, A. 2012. Oil palm biomass fibres
and recent advancement in oil palm biomass fibres based hybrid biocomposites. Composites and Their Applications. InTech. https://doi.org/10.5772/48235
Acoustic
Comfort. n.d. Sound Absorption Classes. Accessed on March 4, 2023.
https://acousticcomfort.co.uk/uploads/Sound%20absorption%20classes.pdf
Ghulam Kadir, Ahmad Parveez, Nur Nadia Kamil, Norliyana Zin Zawawi & Meilina Ong-Abdullah. 2022. Oil palm economic performance
in Malaysia and R&D progress in 2021. Journal of Oil Palm Research 34(2): 185-218. https://doi.org/10.21894/jopr.2022.0036
Gómez
Escobar, V., Moreno González, C. & Rey Gozalo, G.
2021. Analysis of the influence of thickness and density on acoustic absorption
of materials made from used cigarette butts. Materials 14(16): 4524.
https://doi.org/10.3390/ma14164524
Hoda Soliman Seddeq.
2009. Factors influencing acoustic performance of sound absorptive materials. Australian
Journal of Basic and Applied Sciences 3(4): 4610-4617.
Hua, Q.
& Yang, E. 2018. Effect of thickness, density and cavity depth on the sound
absorption properties of wool boards. Autex Research Journal 18(2): 203-208. https://doi.org/10.1515/aut-2017-0020
Istana,
Budi, I Made Londen Batan, Sutikno, Samrith Khem, U Ubaidillah & Iwan Yahya. 2023. Influence of
particle size and bulk density on sound absorption performance of oil palm
frond-reinforced composites particleboard. Polymers 15(3): 510.
https://doi.org/10.3390/polym15030510
Li, Y. &
Ren, S. 2011. 2 - Basic properties of building decorative materials. In Building
Decorative Materials. Woodhead Publishing: Woodhead Publishing Series in Civil and Structural
Engineering. pp. 10-24.
https://doi.org/https://doi.org/10.1533/9780857092588.10
Loh, S.K. 2017. The potential of the Malaysian oil palm biomass
as a renewable energy source. Energy Conversion and Management 141(June): 285-298. https://doi.org/10.1016/j.enconman.2016.08.081
Mageswaran, R., Ewe, L.S., Yew, W.K., Mohammad Nazhan Nasir & Zawawi Ibrahim. 2021. Acoustic performance
mixture of natural fibres of oil palm frond (OPF) and empty fruit bunch (EFB). Solid
State Phenomena 317(May): 361-368.
https://doi.org/10.4028/www.scientific.net/SSP.317.361
Mageswaran, R., Ewe, L.S., Yew, W.K. & Zawawi Ibrahim. 2019. Acoustic properties of mixing empty fruit bunch and oil palm
frond natural fibres. International Journal of Recent Technology and
Engineering (IJRTE) 8(4): 6347-6349.
https://doi.org/10.35940/ijrte.D5119.118419
Nair, S.N.
& Dasari, A. 2022. Development and characterization
of natural-fiber-based composite panels. Polymers 14(10): 2079. https://doi.org/10.3390/polym14102079
Nandanwar, A., Kiran, M.C. & Varadarajulu,
K. Ch. 2017. Influence of Density on sound absorption coefficient of fibre
board. Open Journal of Acoustics 7: 1-9.
https://doi.org/10.4236/oja.2017.71001
Nasir,
Mohammad Nazhan, Ewe, L.S., Yew, W.K., Woon, H.S. & Zawawi Ibrahim.
2021. Enhancement of acoustic performance of oil palm frond natural fibers by substitution of jute fiber. Journal of Advanced Research in Materials Science 78(1): 11-17.
https://doi.org/10.37934/arms.78.1.1117
Ong, T.K.,
Choo, H.L., Lee, S.M. & Kong, K.Y. 2020. Oil palm wastes as sustainable
sound absorbing particleboard. IOP Conference Series: Materials Science and
Engineering 815(1): 012010. https://doi.org/10.1088/1757-899X/815/1/012010
Qaim, M., Sibhatu, K.T., Siregar, H. & Grass, I. 2020. Environmental, economic,
and social consequences of the oil palm boom. Annual Review of Resource
Economics 12(1): 321-344. https://doi.org/10.1146/annurev-resource-110119-024922
Shen, J.,
Li, X. & Yan, X. 2021. Mechanical and acoustic properties of jute fiber-reinforced polypropylene composites. ACS Omega 6(46): 31154-31160. https://doi.org/10.1021/acsomega.1c04605
Sihabut, T. & Laemsak, N. 2010. Sound
absorption capacity of oil palm frond fiberboard with
different finishing. Environment and Natural Resources Journal 8: 38-43.
*Corresponding author; email:
laysheng@uniten.edu.my
|